Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach

نویسندگان

  • Prejaas Tewarie
  • Arjan Hillebrand
  • Bob W. van Dijk
  • Cornelis J. Stam
  • George C. O'Neill
  • Piet Van Mieghem
  • Jil Meier
  • Mark W. Woolrich
  • Peter G. Morris
  • Matthew J. Brookes
چکیده

Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-layer network approach to MEG connectivity analysis

Recent years have shown the critical importance of inter-regional neural network connectivity in supporting healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however the richness of the electrophysiological signal makes gaining a complete picture challenging. Specifically, connectivity can be calculated as statistical interdependencies between ne...

متن کامل

Cross-frequency coupling mechanisms in the ongoing resting-state predict BOLD fluctuations

Functional MRI and PET have demonstrated the existence of resting-state networks in the brain (Gusnard & Raichle, 2001; Raichle et al., 2001; Greicius et al., 2003). Yet the neural correlates and thereby the fine-scale temporal dynamics of the brain's intrinsic network activity remain elusive. A full understanding of the mechanisms at play cannot be achieved without input from electrophysiology...

متن کامل

Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution

The brain consists of functional units with more-or-less specific information processing capabilities, yet cognitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography (MEG) has the temporal resolution to capture these frequency-dependent interactions, although, due to volume conduction and field spread, spurious estimates may be obtained when...

متن کامل

How reliable are the functional connectivity networks 1 of MEG in resting states ?

19 We investigated the reliability of nodal network metrics of functional connectivity (FC) 20 networks of MEG covering the whole brain at the sensor level in the eyes-closed (EC) and 21 eyes-open (EO) resting states. Mutual information (MI) was employed as a measure of FC 22 between sensors in theta, alpha, beta, and gamma frequency bands of MEG signals. MI matrices 23 were assessed with three...

متن کامل

Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity

Large-scale networks support the dynamic integration of information across multiple functionally specialized brain regions. Network analyses of haemodynamic modulations have revealed such functional brain networks that show high consistency across subjects and different cognitive states. However, the relationship between the slowly fluctuating haemodynamic responses and the underlying neural me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2016